LLM大语言模型算法特训,带你转型AI大语言模型算法工程师[完结8周]

feilipu2023nui · · 453 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。
![1.png](http://static.itsharecircle.com/240203/38139a5e4218ce5cb05e18fecae0727a.png) 大语言模型是一种基于神经网络的自然语言处理技术,可以学习和预测自然语言文本的规律和模式。简单来说,大语言模型就是一个能够理解和生成自然语言的AI程序。在大语言模型中,神经网络模型可以通过学习大量的语料数据,来自动地提取自然语言文本中的特征和模式,从而实现自然语言的理解和生成。 具体来说,大语言模型的基本思想是将自然语言文本看作是一种序列数据,例如单词序列或字符序列。神经网络模型可以通过输入这些序列数据,并通过多层神经元的计算和转换,来生成对应的输出序列。在大语言模型中,神经网络模型通常采用循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)等结构,来处理序列数据的信息。 大语言模型的发展可以追溯到上世纪80年代,当时科学家们开始尝试使用神经网络来处理自然语言。但由于当时计算机硬件和数据资源的限制,这些神经网络模型往往只能处理非常简单的自然语言任务。 随着计算机硬件和数据资源的不断提升,神经网络模型在自然语言处理领域的应用也得到了快速发展。在2010年左右,科学家们开始尝试使用深度神经网络来进行自然语言处理,例如使用卷积神经网络进行文本分类等任务。 在2013年,Tomas Mikolov等人提出了一种基于循环神经网络(RNN)的语言模型,称为RNNLM。这种模型可以根据前面的单词来预测下一个单词,从而实现对文本的生成和预测。RNNLM不仅可以生成自然语言文本,还可以用于机器翻译、语音识别等任务。 在2014年,Bengio等人提出了一种基于长短时记忆网络(LSTM)的语言模型,称为LSTMLM。这种模型可以解决RNNLM中存在的梯度消失和梯度爆炸等问题,并且可以在更长的上下文中进行预测和生成。 在2018年,OpenAI推出了第一代GPT模型,其参数量达到了1.17亿个。这个模型在各种自然语言处理任务中都取得了非常好的效果,例如文本分类、语言模型等。而在2019年,OpenAI推出了更加强大的第二代GPT模型,其参数量达到了15亿个。这个模型在生成自然语言文本方面表现出了更加出色的性能,例如可以生成更长、更连贯的文本。 大规模语言模型的发展历程虽然只有短短不到五年的时间,但是发展速度相当惊人,截止2023年6 月,国内外有超过百种大模型相继发布。中国人民大学赵鑫教授团队在文献按照时间线给出2019 年至2023 年5 月比较有影响力并且模型参数量超过100 亿的大规模语言模型
453 次点击  
加入收藏 微博
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传